Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Bioengineering (Basel) ; 10(2)2023 Feb 02.
Article in English | MEDLINE | ID: covidwho-2282341

ABSTRACT

Bioactive compounds are the secondary metabolites produced by the plant cell through numerous metabolic pathways [...].

2.
Biotechnol Rep (Amst) ; 35: e00751, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1956094
3.
Current Research in Green and Sustainable Chemistry ; : 100074, 2021.
Article in English | ScienceDirect | ID: covidwho-1095923

ABSTRACT

There has been a growing concern for safety and precautions in the wake of coronavirus SARS-CoV2 pandemic also dubbed as COVID-19, which has caused a major impact at a global scale. This has resulted in many industries accelerating at fast pace new biosafety technologies and improving the already existing ones to deal with this highly contagious virus. Most governments across the globe are also mandating policies focusing on increased biosafety to prevent further spread of the virus and protect key workers such as healthcare agents, store employees and police. The COVID-19 pandemic has exposed huge gaps in the healthcare industry that include lack of effective vaccines and medicines, testing of infection, real-time monitoring of the spread of the virus, inadequate protective equipment, and scarcity of protective and intensive care of patients. Some of these may be attributed to a lack of focused research in biosafety materials. As a consequence of the pandemic, a significant body of research activities has therefore focused on biosafety materials that possess unique properties needed for biosafety applications. This graphical review aims to provide a perspective on the usage of bio-based materials to handle the imposing challenges in biosafety. This review investigates existing developments in bio-based antimicrobial encapsulations as an effective measure to deter the growth of COVID-19 virus on surfaces and minimize its spread through surface contact. This will help researchers develop further strategies in material science to focus on contagious pathogens in the future.

4.
Antiviral drugs COVID-19 Coronavirus Nanocoating Pandemic ; 2020(Current Research in Green and Sustainable Chemistry)
Article in English | WHO COVID | ID: covidwho-644224

ABSTRACT

After the eruption of the most deadly influenza flu pandemic in 1918, also known as Spanish flu, infected about 500 million people with a death toll of approximately 50 million globally, the second most devastating pandemic flu emerged in December 2019 ​at Wuhan (Hubei Province) of China. This viral disease caused by a novel coronavirus SARS-COV-2 was named COVID-19 by World Health Organization (WHO). The COVID-19 virus affected 213 countries globally with 5.6 million cases and 353,373 deaths as of May 28, 2020 [1] Fig. 1. Still, there is no promising solution known to tackle this severe epidemic disease worldwide. For protecting the global population from COVID-19, we must follow three steps – early detection, monitoring, and treatment. At the same time, it is important to follow WHO guidelines on preventive measures. Many countries have restricted the movement of people completely and lockdown was enforced to maintain social distancing. But lockdown alone is insufficient to prevent resurgence, can upend economies and roil society. People need to step out to perform essential tasks and may get exposed to this deadly virus. Learnings from previous outbreaks suggest the usage of nanotechnology as an important avenue to develop antiviral drugs and materials. So, to effectively minimize the acquired infection of COVID-19 in public places like hospitals, transport, schools, worship places, stores, malls, etc. Antimicrobial nanocoatings at these places and development of targeted antiviral drugs through capped nanoparticles will be a major effective option to tackle the spread of this disease.

SELECTION OF CITATIONS
SEARCH DETAIL